An efficient fully-discrete local discontinuous Galerkin method for the Cahn-Hilliard-Hele-Shaw system

نویسندگان

  • Ruihan Guo
  • Yinhua Xia
  • Yan Xu
چکیده

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Analysis of Mixed Interior Penalty Discontinuous Galerkin Methods for the Cahn-Hilliard Equation and the Hele-Shaw Flow

This paper proposes and analyzes two fully discrete mixed interior penalty discontinuous Galerkin (DG) methods for the fourth order nonlinear Cahn-Hilliard equation. Both methods use the backward Euler method for time discretization and interior penalty discontinuous Galerkin methods for spatial discretization. They differ from each other on how the nonlinear term is treated, one of them is bas...

متن کامل

Fully discrete dynamic mesh discontinuous Galerkin methods for the Cahn-Hilliard equation of phase transition

Fully discrete discontinuous Galerkin methods with variable meshes in time are developed for the fourth order Cahn-Hilliard equation arising from phase transition in materials science. The methods are formulated and analyzed in both two and three dimensions, and are proved to give optimal order error bounds. This coupled with the flexibility of the methods demonstrates that the proposed discont...

متن کامل

Application of the Local DiscontinuousGalerkinMethod for the Allen-Cahn/Cahn-Hilliard System

In this paper, we consider the application of the local discontinuous Galerkin method for the Allen-Cahn/Cahn-Hilliard system. The method in this paper extends the local discontinuous Galerkin method in [10] to the more general application system which is coupled with the Allen-Cahn and Cahn-Hilliard equations. Similar energy stability result as that in [10] is presented. Numerical results for ...

متن کامل

Numerical Analysis of the Cahn-hilliard Equation and Approximation for the Hele-shaw Problem, Part Ii: Error Analysis and Convergence of the Interface

In this second part of the series, we focus on approximating the Hele-Shaw problem via the Cahn-Hilliard equation ut + ∆(ε∆u − εf(u)) = 0 as ε ↘ 0. The primary goal of this paper is to establish the convergence of the solution of the fully discrete mixed finite element scheme proposed in [21] to the solution of the Hele-Shaw (Mullins-Sekerka) problem, provided that the HeleShaw (Mullins-Sekerka...

متن کامل

Convergence analysis of a fully discrete finite difference scheme for the Cahn-Hilliard-Hele-Shaw equation

We present an error analysis for an unconditionally energy stable, fully discrete finite difference scheme for the Cahn-Hilliard-Hele-Shaw equation, a modified Cahn-Hilliard equation coupled with the Darcy flow law. The scheme, proposed in [47], is based on the idea of convex splitting. In this paper, we rigorously prove first order convergence in time and second order convergence in space. Ins...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Comput. Physics

دوره 264  شماره 

صفحات  -

تاریخ انتشار 2014